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Life-span is genetically determined

The aging process is influenced
by both genetic and environmental factors




Life expectancy in the record-holding country
increased of ~2 folds in the last 200 years

1840: 45 years (Swedish women)
2000: 85 years (Japanese women)

driven mainly by improvements in sanitation,
housing and education

(environmental)

Maximal life span did not vary significantly

due to the intrinsic limit of life-span, which
become manifest under favorable condition
(genetic)



Common belief:
the expectation of life
cannot rise much further.

Prediction:
life-expectancy trajectories
will rapidly approach a maximum

(growth in longevity would stop
and we would see the fixed reality of the ageing process;
due to a fixed rate of mortality in the late-life)



All forecasts have repeatedly been proven wrong
(on the average 5 years after publication)
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Life expectancy in developed countries
has increased linearly in the last two centuries
(and continued to increase linearly in the last 40 years)
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As expected, no decline in early/mid-life mortality
was observed in the last 40 years
(in the developed countries)
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Unexpectedly, a significant decline in early/mid-life mortality
was observed in the last 40 years
(in the developed countries)
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Why life expectancy is still rising
In the western countries?

Where this process might end?



There Is no single accepted explanation
or mechanism of aging
(more than 300 theories have been proposed)

Nascimur uno modo, multis morimu
(in one way we are born, in many ways we die,
and there is probably no single way to age)

Controversy reigns on whether aging

is the expression of

a specific genetic program (like development)

or a non-programmed process (wear-and-tear type)




The case for programmed ageing:

- Single gene mutations accelerate aging in humans

18 year-old



Tens of single-gene mutations in model systems have
been generated, which prolong life-span

They all affect genes
of the insulin pathway

and attenuate insulin signaling
1, 1
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Caloric restriction (w/o malnutrition)
Prolongs life-span of multiple species,
from single-celled organisms to mammals

Species Life-span Increase
Cerevisiae 75%
C. elegans 46%
D. melanogaster 28%
Medflies 22%
Grasshoppers 40%
Spiders 212%
Water fleas 69%
Rotifers 60%
Hamsters 30%
Mice 65%
Rats 85%
Dogs 16%

Rhesus 28%



Insulin signaling in the adipose tissue
regulates life-span
in both invertebrates and mammals

« Caloric restricted mice have reduced adiposity

« Fat-specific disruption of the insulin receptor gene
decreases body fat and prolongs life-span in mice



The case for no programme:

- Natural selection could not, and would not,
bring about such a fate

« Ageing is the simple consequence of a lifelong
accumulation of random molecular damage

« Damage is caused by free radicals
(Reactive oxygen species; ROS)




The free radical or mitochondrial
theory of aging

ROS are generated accidentally,
as by-products of

mitochondrial respiration
(when molecular oxygen reacts with
the ETC upstream to complex IV)

itochondrion®
. matrix
Intermembrane "

ROS induce damage to
macromolecules (oxidative stress),
which accumulates over life

H 02 H.O Damaged macromolecules induce
2~2 2 cell death (apoptosis) and tissue
ROS dysfunction
Oxidative Cell Tissue

stress > death i degeneration



Genetic modifications that reduce levels of
intracellular ROS prolong life-span
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Two main life-span determinants:

* Insulin signaling in the fat tissue
* Oxidative stress

Two main interpretation of the aging process:

* Genetically programmed (deterministic)
* Unprogrammed (stochastic)

Do they represent alternative mechanisms and
alternative interpretation?



One particular ROS (hydrogen peroxide; H,0,)
behaves as a signaling molecule

* Induces fully reversible protein modifications
(e.g. oxidation of cysteinyl thiol with formation of disulphide bonds)

« H,0,-induced modifications affect the function of the
protein targets

(inactivation of phosphatases, activation of tyrosine kinases and of
various transcription factors)

* H,0, potentiates receptor signaling (including insulin
signaling)



H,O, can be generated in mitochondria
by specialized enzymes (p66)

cytosol Intermembrane

ROS (H,0,)

P66 functions as an inducible redox enzyme,
which catalyzes the divalent reduction of O, to H,0,
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INCREASED RESISTANCE TO STRESS-INDUCED APOPTOSIS
IN MICE WITH DELETION OF P66

IN VITRO
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P66 is expressed
in the white and brown
adipose tissue
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. P66 produces H,O,
‘ ‘ in the adipose tissue
| after insulin treatment
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| P66-generated H202

potentiates
1, 4 Insulin signaling
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P66-generated H202
inhibits fatty acid oxidation
And potentiates
Insulin-induced lipogenesis
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P66-/- mice have less Adipose Tissue
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P66-/- mice are protected
from diet-induced obesity
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Analysis of metabolism:
p66Shc favors energy conservation
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P66 switches the energetic balance of adipocytes
toward lipogenesis and energy conservation

Food

¢

Insulln

202
‘ ' Lipogenesis

P66 exerts this function by integrating, in adipocytes,
insulin-signaling and mitochondrial energetic state

Energy pr-oducflon
(mitochondria)



Does reduced adiposity play a role
in the effect of p66 on life-span?

*CR and FIRKO mice have reduced adiposity and live longer

*CR and FIRKO mice have a relative increase of the
systemic sensitivity to insulin

*Aging is associated with the development of relative insulin
resistance



P66 “decreases” insulin sensitivity
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Reduced severity of late-onset (degenerative)
diseases in p66-null mice

Endothelial Glomerulopathy
bl &
Ischemic Damage i P a
1 T
K I o
m] 1 1 H i ]
T | 1 i
£, J L =
= B et X Cmm
o it — b " . MSA  CML
Eaxl et Francia et al, 2004 /Menini et ai, 2007
i ry 5
- | 4
Diabetes
Zaccagnini et al, 2004 // *
. 4 1.50
o 125
R t
g ___E.-Em:
= 5 = 110
4 - g
Arteriosclerosis Menini of &, 20080 D
- ",
o -
Ao - >
= o \\\ Retinal
& - l ~, vascularization
i 1/ e
§ Myocardial : | = ;
T : 1
5o HEE E_H € : E Y
W RD WT HFD  peezie-s- pel i ]
] ] Foih .
Mapali et al, 2003 g i
FE ii 2 3T
K ¥ dnall Rota et al, in press

Graiani et al, 2005



P665%¢ is a genetic factor of the metabolic syndrome

P66 -/= mice show: The METABOLIC SYNDROME includes:

- Increased insulin sensitivity - Insulin resistance
- Higher glucose tollerance - Glucose intolerance
- Reduced body weight - Hyperglicemia
- Reduced fat mass - Obesity/Excessive fat tissue
-low risks of endothelial disfunction - Atherogenic dyslipidemia, higher risk of atherosclerosis
- low risk of atherosclerosis - Raised blood pressure
- Prothrombotic state
- Proinflammatory state




p66Shc-generated H,0, regulates directly
the threshold of sensitivity to insulin in adipocytes
(and indirectly the penetrance of aging-associated
diseases) and the development of fat tissue

Why p66 increases the treshold of insulin sensitivity?

Why mammals are “more obese” than needed?

Why mammals have a genetic program that increases
The risk of disease?

How the p66 program was selected during evolution?



Abnormal adaptation to cold in p66-/- mice
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(accelerated heat loss due to reduced thermal insulation)

The physiological size of the fat tissue may be set to serve other functions,
which are evolutionarily more critical than longevity.

Adaptation to cold and/or optimization of energy storage
when food is available could be one of such functions

Why such functions are
mechanistically linked to life span control?



A conserved genetic pathway
(yeast, worms, flies, mammals)
That is activated by food scarcity
and that retards aging
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Do genetic pathways exist
(involving p66 and Sirt)
That regulate resource allocation,
aging and longevity
in response to food availability?
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Do genetic pathways exist
(involving p66 and Sirt)
That regulate resource allocation,
aging and longevity
in response to food availability?
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Do genetic pathways exist
(involving p66 and Sirt)
That regulate resource allocation,
aging and longevity
in response to food availability?
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Decreased tumor formation
in the p66-/- mice
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Reduced B16F1melanoma growth in p66Shc-/- female mice
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Obesity and insulin resistance
Are important cancer-risk factors

1. Obesity and diabetes are cancer risk factors

Epidemiological and animal studies have shown that overweight and obesity (BMI>5Kg/m2) are
associated with increased risk for cancers at numerous sites, including the breast (among
postmenopausal women), colon, endometrium, esophagus, gallbladder, liver, prostate, ovarian,
pancreas, and kidney. A recent study of approximately 900,000 individuals suggests that
obesity may account for 714% of cancers in men and 20% of cancers in women, and in this
cohort, the heaviest men and women were 52% and 62%, respectively, more likely to die of
cancer.

2. Insulin-resistance is a cancer risk factor
(independent, with respect to obesity and diabetes)

Adults with impaired glucose tolerance have the greatest adjusted relative hazard of cancer
mortality (relative hazard = 1.87, 85% confidence interval (Cl): 1.06, 3.31), followed by those
with undiagnosed diabetes (relative hazard = 1.31, 95% CI: 0.48, 3.56) and diabefes (relative
hazard = 1.13, 85% CI: 0.48, 2.62).



Putative mechanisms of
the reduced cancer risk in the p66-/- mice

- Decreased secretion pro-inflammatory and tumor-
promoting adipokines

- Decreased cellular sensitivity to tumor-promoting
hormones (Insulin and IGF-1)
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INCREASED RESISTANCE TO STRESS-INDUCED APOPTOSIS
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Apoptosis is the most powerful
mechanism of tumor suppression
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Apoptosis is the most powerful
mechanism of tumor suppression
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Longevity mouse models:

IGF1R+/-; Ames Dwarf;
GHR-/-; p66Shc-/-;
caloric restriction

* Increased resistance to stress
(reduced apoptosis)

e No increased risk of tumor formation



The p53-p66 pathways
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The p53-p66 pathways
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The p53-p66 pathway manifests its
effects on tissue homeostasis
(degeneration and transformation) late in life
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